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: ABSTRACT 9}/93

+

' We study the dynamics of the I = 1, J = % K 2 and KN systems by the N/D

method. The dynamical singularities of the partial wave amplitude are assumed
to arise mainly from the nearby cut (due to I and A exchange in the crossed
v chaﬁnel) and the far left hand cut (-» < s < 0). The contribution of the former
is evaluated explicitliy in terms oi the relcvant Yukawa coupling constants and
™ that of the latter, by the method of Baldzs, through the introduction of effec=-
tive range bole terms. We find that for a wide range of choice of the relevant
Yukawa coupling constants, there exist self-consistent bound state (or resonant)
solutions for both I = 1, K = and KN-systems. Self-consistent solution for the
position in case of the former is found to lie in the range 1650 ~» 1870 Mev
and that for the latter in the range 1300 ~~ 1600 Mev. The overall conclusion
is found to be rather insensitive to the choice of the relevant Yukawa coupling
' constants.
It is discussed inthe Appendix that it appears to be a typical feature of
Baldzs type procedure for treating the far left hand singularities, that in almost

, +
any J,-~% Baryon-meson system one -would obtain selfscofisistent bound state or low
lying resonant solution, unleas the Born terms are-very stgongly repulsive, Exper=-

£

imental confirmation on the existence or nonexisiencé &f such systems would, thus,

have strong implications on the dynamical methods such as for example adopted in

the present note. O)J:w'lm’




I. INTRODUCTION

The discovery of the Q--hyperon at about 1680 Mev fits béautiﬁully into
the 10-fold representation of SU(3). From the dynamical point of view.it occurs
as a pole (in this case é bound state) in the T =0, J = 3/2+ -kRE- scattering,
which presumably arises through the forces due to ¥ and A-exchange in the u-
bove ceattering via the N/AD method

channel. Explicit dynamical treaimenai of &

with the specific purpose of studying whether or not one should expect a bound

state (or a resonance) in the above system has been carried out by many authors.(l)
One may summarise the results by saying that the qualitative aspects of the exis-
tence of ) is perhaps well understood dynamically. One interesting feature that
puts the dynamical treatment of () on a somewhat better footing than those of its
£ +(3) )
predecessors such as & and 1& is that to a fairly good approximation ()
is essentially a one channel problem; hence the virtues or defects of the dynami-
cal methods may be attributed to sources other than the inherent multichannel
problem (For example; to the treatment of the far left hand cut singul#rities,
inelastic effects, etc.). The other feature (which is common to the E*(Z)-problem
‘as well) is that in tﬁe method; where one treats the far left hand cut (£.1l.h.)
singularities‘by thg effective.range pole terms(A) (hopefully this is better than
just considering the exblicit’contribution of the Born singulariiies) the
dence on the relevant Yukawa couplings is not so marked at least for the qualita-
tive aspects of the conclusion. This may, at the outset, also be regarded as a
virtue (however see discussion in Sec. IV, and Appendix).

With these remarks we note that there are three distinct systems in the 27-

fold representation of SU(3), which also have the characteristic of being essen-

and I = 2 L m-system. Analogous to the (0" problem we, therefore, study in this

tially single channel problems. They are the I = 1, K E -system, I = 1 KN-system
-1-
|



-2-

note the dynamics of the I = 1, J = 3/i+ - K = and KN-systems with a view to find
out whether or not one should expszt a bound state (or a resonance) in these sys-
tems, if so at what energies and with what residues. The I = 2, I m-system is

(%)

studied similarly in a separate note.

We find ihat for & wide rangc cf choice of the relevant Yukawa coupling
constants, there exist self-consistent bound state (or resonant) solutions for
both T = 1 K & and KN-systems. The results are presented in Sec. III and are
discussed in Sec. IV. 1In the Appendix we show that it appears to be a typical
feature of the Balazs procedure for treating the f£.1.h. singularities that in

almost any J = 3/i+ Baryon-pseudoscalar meson system, one would obtain self-

consistent bound state or low lying resonant solution, except when the Born terms

are very strongly repulsive. It is discussed in Sec. IV that experimental con-
firmation on the existence or nonexistence of such systems will, therefore have
strong implications on the dynamical methods such as for example adopted in the
present note,

3"

II. THEJ =3 , I~ 1, K = AND KN-SYSTEMS

K E-System:

We will first discuss scattering in the I = 1, J = 3/2+ - K E-system and
mention later what substitutions are needed for the corresponding KN-system. We
will follow the same notations and almost the same procedure as in I.(3) The
reader is referred to I for details. The singularities of the partial wave ampli-

tude in the unphysical region arise from (i) A and X-exchange in the u-channel

(ii) higher mass exchanges in the u-channel and (iii) Vector-Meson and higher mass

‘exchanges in the t-channel. We neglect (ii) and (iii) in so far as they contri-

bute to the singularities in the unphysical region in the right half s-plane,
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which, therefore is assumed to arise solely through (i). The contributions of
(i), (ii) and (iii) to the singularities in the left half s-plane are represented
by effective range pole terms whose positions and residues are determined by the
prqcedhre-suggested by Balazs.

{g) 2g usual in the farm N(a)/D(s),

""""

Wriiing ihe partial wave amplitude g +
1
where N contains all the unphysical singularities and D the physical right hand

cut, we have (using elastic unitarity)

s8-8 < i
o) = 1-—=2 § LM g w .
_ 2 s(s-s)(s-so)
(+2)
and
N(s) = N(f)(s) + N(n)(s) (2)
where’
' '
o {Img _(s)} D(s)
N.(s) = & I ds >3 + % 3)
£ = et

b3 and b4 are unknown constants independent of s and will be determined by the
-use of the fixed energy dispersion relation; ss and s, are determined by drawing

the Baldzs curves and are found to be:

2 2 -
8y & - 22.6 m s 8, & = 625 m_ (4)



L
1 ‘1:2(2) i’i)(s) L L2 :A)(s)
; ! + = '-——r———-‘
(n)(s) - ; J ds ; . +'-T st T (5)
L, (%) 1"

where

2
sV = LEK [+ m? - &) 0+ Y - 2 290, (@)

1 32nq
+ {0 -2 - &) @+ 28 - D) Q@] (6)
2 2 2 2 o
a_{Z(::.-l-K);W-N}_'_l } N
2q

QL(X) stands for the legendre function of the second kind, By for the YEK

coupling constant and Y for ¥ or A. The end points of the cuts are given by

| 2 222
L --fr-—?ﬂ—’— D oL,m = 2@+ K -7 (®)

Thus:

A = 91 m" .LZ(A) = 139 m?

bl
[
—l

2 2
Ll(ZD = 79 L LZ(ZD = 129 m_ ¢))

As mentioned in I, the nearby cut contribution to the N-function (i.e.,
N(n)(s)) is well represented by a two pole formula for s in the physical regionm.
Thus for s % (K + E)z

b b
1 + 2

8~8

= (s 2 (K + 8)7) (10)

N(n)(s) ~
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where by explicit evaluation of N(n)(s) (as in I) for a few values of s, we find
mz (11)
A1

The residues b1 and b2 are determined for a given choice of (i) the coupling
constants giNK/éﬁ, {ii) the subtraction point = and (iii) the inmut value of
the position ((SR)in) of the bound state or resonance under examination.

For s below the physical region (i.e., for s = le or sMi, to be introduced

below) Nn(s) is evaluated explicitly by numerical integration.

From' Eqs. (1), (2), (3) and (10), the D-function is given by

' 8=8 4
D(s) = 1 - iza bi F(s,si,so) (12)
where
( (@>/s) '
F(sssissd) - f ’ T qv 2 T ds (13)
2 (s-s)(s-so)(s-si) :

(R+=)
The F-functions are evaluated numerically by IBM 7094 for various values
of the argument s. Ihus'the<partiai wave amplitude N(s)/D(s) is determined except
for the unknown constants b3 and b4. To determine b3 and b4 we use [ixed s dis-
persion relation (FSD) in a region where the partial wave expansion is expected
to be convergent. The fixed energy dispersion relation for the invariant ampli-
tudes A(s,t,u) and B(s,t,u) are given by
A(s,t,u) = Rzz+ RA2+ RB +% S-dt'(--a)+-1l; Sdu'(m--) (14)

8~8
u-mz u-mA R
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A similar expression holds for B(s,t,u). The third term corresponds to the
contribution of the bound state or resonance in the direct channel with unknown
position and residue. We drop the contribution from the integral terms on the
RHS 6f Eq. (14) as well as the vector meson exchange pole terms in the t-channel
(These can he shown to be small.). Thus our partial wave amplitude approximated

by the FSD in the appropriate region is given by

£ () o gif’(s) + g;{" (s) + gff““d’(s) (15)
where
g P V) = - (o) (B 3)22‘ <) L (16)
1 R + E) = K B .

W_ stands for s%

B B and denotes the mass of the bound state (or resomance); | is

the corresponding residue.

If we equate the right side of Eq. (15) with N(s)/D(s) at two points le
and sM, (chosen aﬁpropriately such tha; both the representation (15) and the
‘approximate fepresentation for N(s)/D(s) outlined above hold at le and sMé),

we can evaluate b, and b, in terms of the input values of s_ and \4: (called

3 4 R
(sR)in and ( \ )in) for a given choice of the Y E K coupling constants. We

choose, subject to the criterion discussed in I,

2 2
sM; = 75Wy , sM, = 142 (17)

Once b3 and b4 are determined, as mentioned above, one can compute the D-

function, look for the zero of the real part of the D-function, which will be

identified as the output value of Sp ((SR)out) and the corresponding output

value of the residue is given by

1
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N[{(s,) ]
(W gy = = 2 (as—) e
ou ReD{ {550 o ] R’ out

Solutions for Sp and W are to be regarded as acceptable if their output
values are consistent (to within say 5%) with the input values. It is .hoped
that these solutions, if they exist, will lie within a narrow range and will

determine the question of existence of the physical bound state (or resonance).

I=1,J=23/2" - kN-System:

The treatment of I =1, J = 3/2+ - KN system is very similar to that of
the I=1, J= 3/2+-i 5 system. The singularities of the partialvwave ampli-
tude of both systems arise from similar exchanges in the crossed channels, such
as, for example, A and ¥ exchange in the u-channel. Thus the treatment of the
KN system is simply obtained from that of the K H-system by the following sub-

stitutions

KoK 3 H5-N, ey "8k » 2" Bpax ™ 8o (19)
)

For the KN sysiem; essentially due to (2 - N) mass difference we find

2 - 2 2 oy 2
Ll(l\) ~ 16.6 m_ , LZ(A) & 51.6 m s Ll(Z) o= 14.5 W LZ(Z) = 42 m

2 2
8, &= 18.8 mo, 8, = 39.4 me

2 2
8 X -17 m_ , 8, = =400 m (20)

we choose



1
ana

8 = sM - (21

Loy 1 S ~
diic -

¢

[

»
02
"

procaedure for KN system and the testing of existence of self~
consistent solutions for bound states or resonances are done in the same way as
for the K H-system. The results for both systems are summarised in the following

section.

IIT. RESULTS
In the following we first summarise the results for the J = 3/2+, I=1,
i?E-system and then do the same for the corresponding KN-system.

J. = 3/2+, I =1, K E-System:

(1) First of all, irrespective of the choice of the relevant Yukawa coupling
constants (confined within a reasonable range) we find that there does exist
self-consistent solution for position and residue indicating the existence

. H-ayvatem (call the correspond-

=

‘of bound gtate {or resuvnance) in the I.= 1,

t

. , - - 0
ing particles as z , z and z ).

2
18y =K

Since it is not clear how well these predictions are obeyed by the physical

J4m 2~ 15 and for a f/d-ratio =~ -%; giEK/4“ 2~ 0.

(2) In the SU(3) limit
coupling constants apart from what is a reasonable value for the f/d-ratio,
we tried a wide range of values for these coupling constants. -We chose
,gé EK/lm' = 16, 8, 4, 1, 0 and indepeadently giEK/QH = 16, 8, &4, 1, O.

*
We find, as in the ¥ -problem, the results are rather insensitive to the

[T
r
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choice of the Yukawa coupling congtants. Of course, as is expected, there
is found to be a gradual increase in the self-consistent value of the residue

(6)

Vt , with an increase of the effective coupling constant. Except for
this, it is found that there is not a very marked dependence of the position
of the bound state (or resonance) cn the chwice of the coupling constants.,

In other words, if we impose that the self-consistency in position and resi-
due be good to say 5 ~10%, then for any choice of coupling constants in the
above range and for input values of the pcsition in a reasonable range (say
140 ~ 180 mi); one can pick an input value of W for which the output values
of Sp and \{ are consistent with the corresponding input values. The input
values of s, that give rise to self-consistent output values are found to lie

R

within the range

s & 10~ 175 me (22)

Above(7) this range the self-consistency becomes -poorer. Depending upon the
choice of the coupling constants the corresponding self-consistent solution

for X is found to lie within the range
Ka 8 ~ 16 (23)

Of course, if one demands better and better degree of self-consistency (say
better than 1% in both residue and position) the self-consistent solution
for a given choice of coupling constants get restricted to a narrower region.
This is part of the reason of quantitative discrepancy between the results
of Kane(s) and that of ours. Qualitatively the results agree. We feel that

it is hard to judge a priori how gcod a self-consistency should one really
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expect in such an approximate method. So it may not be proper to disregard
gclutions which are not exactly self-consistent but are so within, say 5 to
10%. The other reason of discrepancy is the neglect of ¥ A-mass difference

in Kane's work.

ot
"~

(3) Again as in the E problem, with self-consistent value of }\ and
g2/4w < 5 (say), the effective range pole terms denoting the far left
hand cut contribution (N(f)) are found to be larger than the nearby cut
contribution (N(n)) by at least an order of magnitude. - Similarly, in the

fixed energy dispersion relation the I, A-Eontribution to g + is found to

(Bound)) 1

1+

be smaller than that of the bound state term (g

J = 3/2+, I =1 - KN-System:

The qualitative aspects of the results (1), (2) and (3) mentioned above also
hold for the KN~-system. The self-consistent solutions for the position and resi-

‘due - are found to lie in the range

2
8p & 8 ~ 135 m

(24)
K &~ 75 ~i1
Above 135 mﬁ the self~consistency becomes considerably poorer.

Thus one should expect not only a bound state (or resonance) in the J = 3/2+,
I=0,KE (i.e., ) and I = 1, K S-system (i.e., z , z°, zo), but also in the
J = 3/2+, K+p-system. The later two are yet to be found. Their exact locations
cannot be predicted too accurately in the present framework. However z  is pre=~

dicted to lie roughly in the range 1650 A~ 1870 Mev while K+p bound state {or

resonance) is predicted to lie in the rangs 1300 A~ 1600 Mev.

[P SSPRVIE FY
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Iy — - = [ : N - ey "'
The I.= 1, K E-system (z , z , z') and the L = i, KN-system {(K'p, etc.)

belong to the 27-fold représentation of §7(3). One would expect, on the basis
cf the present calculation and from the point of view of unitary symmetry, to

observe a host of J = 3/2+ 27-fold bound states (or resonances) in the Baryon-

meson system in addition to the already observed 10-fold representation. So far
there is some indication of the existence of only one system which belongs to
the 27-fold representation, i.e., the rusonance in L' -system around 1415 Mev.
From the experimental point of view the detection of z (I=1,Y==2), if it
were produced in the K p experiment, would be considerably easier than that of
Q0. Since it has not been detected as yet, one would guess that it lies, if at
all, quite a bit higher than Q. As regards K+p system, there is already strong
.experimental indication(lo) on the absence of any bound state or resonance in
this system. At this stage we onlyvnote that if experiments confirm the absence
of any bound state 6r resonance -in the J = 3/2+, I=1, K = and/or KN system,
one would seriously question the success ¢f the methods and the results in the
previous dynamical calculatione. These remarks are related to a general feature
of the Balézs-type bootstrap procedtre, which we note in the following.

We QbserQe that various types of § = 3/2+-systems, such as ﬁé/z(ll), %1(3),
§ <2), Q (1), z--, K+p and T M (3) etc., subjezt to the bootstrap procedure as
outlined in the present note, have all yielded self-consistent bound state (cr

résonant) solutions. From this one might guess that perhaps the analysis is not

80 sensitive to the choice of the system, its strangeness, isospin and SU(3)

representation and that it will lead tc a self-consistent bournd state or resonant

solution in any J = S/i+ Baryon (B)-pseudoscalar meson (P)~system, except when

12
the Born terms may be very strongly repulsive.( ) This is a

(9
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remarkable -and somewhat awkward result, if it corresponds to reality, although

it appears very unlikely. We show in the Appendix that this situation is typical
of at least the Baldzs' type bootstrap procedure, in which thetYukawa coupling
constants play a role in-a rather inconspituous way. This leads one to wonder
about the physical implications of the results in such a scheme. At any rate

the most interesting question is: will experiments preserve such a conclusion

anyway?
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APPENDIX

A TYPICAL FEATURE OF BALAZS TYPE  PROCEDURE

Typically in a problem involving (B+P)-scattering one has: B & 6.5 A
10m_, P 1~ 4 m_; one is interested in studying the occurrence of bound
o " -
state or resonance in the range of (B+P) % 50 mﬁ (say); thus (B+P)“ - 50 m; <

2 2 . . b :
(sR)in < (B+P)” + 50 m 3 le and sM, (the two matching points) are roughly
20 ~ 60 m: below threshold. Under these circumstances one can check quite

generally that irrespective of the choice of the Yukawa coupling constants (con-

fined within a reasonable range) one has to take in the first place a value of

\KT in which is at least 6 A 12 to have se}f-consistency in the position (i.e.,

)

(sR)Out - (sR ). For such values of K in it is found by explicit calcula-

tions in various systems that the overall conclusion on the existence (and per-

in

haps even the location) is hardly affected by varying the Yukawa coupling con-
stants by more than an order of magnitude (g2/¢n o 0 ~ 16, say). Furthermore,

at least when the Yukawa coupling constants are not very large (g2/4ﬂ 2« 1, say)

;found) are bigger than F(“) and gJ(:Ecu'n)

respectively by an order of magnitude or more. Given this; one is ied to ask;

one finds that in general N(f) and g

what would happen if one had put to start with;

and (Born) ‘ A.1)
& 4 nd
1

One then needs to solve for b3 and b4 from the matching equations given by

by/s-84 + b, /83, SR (w+B) - 1

8=8 4 ~ - in 2 w-(w )'

'L b, F(s,s,,s ) [(WR)iﬁ+B] -¥ R’in
i=3 " 1™

(A.2)
1 -

i)
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The above equality is expected to hold in an appropriate region (see discussion

on this in I); within which one chooses the two matching points sM, and sMé. By .
-matching the right and left sides of the above equation, we can evaluate b3 and
b4_in terms of V:in-and (SR)in’ One can then compute the D-function, the zero

of whose real part gives (sR) the corresponding value of WK . is.given by

out’ ou

(see Eq. {(18))

- b3/[(SR)out - S§]+ b4/KSR)out - 84] 1

! 2(W.)
ReD((SR)out)

(A.3)

\cbut =

R’out

Choosing B, P and (sR)in in the range mentioned above, one can now check

quite generally the following:

(A) Firstly starting from Eq. (A.2) one can solve for VQin, that leads to

(s,)

R’out (SR)"'

in It is found that there always exists a value of L(.'tn

typically in the range of 8 ~ 12 which yields (sR)outA- (SR)in’ chosen in

the range mentioned above. - k

(B) if one next asks what is the value of VQ corresponding to ‘V:in so

out

. - / ¥ » [ 3
chosen as to yield (SR)out‘ (sR)in {as mentioned in (A)), one finds (as

may have been expected from Eqs. (A.2) and (A.3)); if (sR)in is chosen in a
certain range below the physical threshold (corresponding to a bound state

sclution), where the fixed energy dispersion relation is expected to hold to

the same extent that we used it to determine b3 and ba; then vcout is
identically equal to V:in' This may be seen as follows. For values of

(SR)in as mentioned above we may put;
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b b
IT(SR>out€:‘l - Y;s )] . - 38 '+’fs ) : - 8,
(Rlout ~* Gr)in \- Rowe 3 wout “l (R out (3R 1n
9 -
- W % [(WR)Out + B] -Pz D(SR)ont .}
~ = W\in 2 w,) - (W) "
(), +B1-P R’ out R4
e, Wose ™ Cein] 501
= - u;n (ZWR)out D(SR)out i (a.4)

Using Eq. (A.3) it follows v:out - V:in. This would imply that in

the Baldzs' procedure; in so far as the Born terms and N are much smaller

(n)

than g{found) and N(f) respectively, one is almost guaranteed to obtain at
1 13
+

least bound state self-consistent solution for any J = 3/2 (B+P)-system.
In some cases (specially when the relevant Yukawa coupling constants are
‘large) the Born terms and N(n) are appreciable. These may make some quanti-
tative difference in the results. However in actual practice, it is found
by explicit calculation in various systems (References 1, 2, 5 and present
note, etc.) that there do exist very good sélf-consistent solutions even

. 2,,
for a very wide range of values of the Yukawa coupling constants, (g /4m

0 A 20, say). Thus it appears that even with the inclusion of the Born

(Born)

1+

existence of self-consistent solution corresponding to either a bound state

terms (g and N(n)) the cverall qualitative conclusion regarding the

or a low-lying resonance14 in every J = 3/2+ (B+P)-system will still be main-

(12)

tained,barring the situation where the Born terms are strongly repulsive.

We note that the above arguments regarding self-consistency need not hold

for resonant solutions ((BR) > (B+P)2), since the representation of the partial

in
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wave amplitude by the fixed energy dispersion relation is not expected to hold
in the physical region (In other words we cannot directiy use Eq. (A.Z)‘tc
the self-consistency in K .). From this one might guess that the self-~
cencistency may get worse as one goes sufficiently above the physical threshold

((sR)in > (B+P)2 + 50 mﬁ, say). This is found to be the case by actual calcula-

tion in various systems.
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We have not checked yet if similar situation holds for other values of angu-

. lar momentum and parity.

(Born) a

i+

the fact that the self-consistency cannot quite rigorously be judged on the

In view of the role played by the nearby singularities (N(n)) and g nd
basis of Eq. (A.2), it is quite possible to obtain.a low lying (low lying
compared to the physical threshold (B+P)2) resonance rather than a bound

state solution. This is what happens in case of (3,3) mN resonance,11 for

example.




